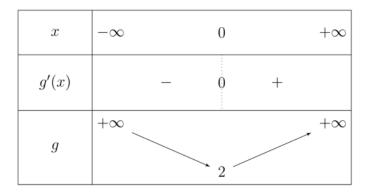
Livre du professeur - Mathématiques Tle Spécialité - Chapitre 5 : Limites de fonctions

Corrigé exercice 104:

- 1. a. Étude de la limite de g en $-\infty$: $\lim_{x \to -\infty} x = -\infty$ donc, par produit par -1 puis par somme, $\lim_{x \to -\infty} (1-x) = +\infty$. De plus, $\lim_{x \to -\infty} e^x = 0$ donc, par somme, $\lim_{x \to -\infty} g(x) = +\infty$. Étude de la limite de g en $+\infty$: $\lim_{x \to +\infty} x = +\infty$ donc, par produit puis par somme, $\lim_{x \to +\infty} (1-x) = -\infty$. Mais $\lim_{x \to +\infty} e^x = +\infty$. On ne peut donc pas conclure directement. Pour tout $x \neq 0$, $g(x) = 1 + x\left(\frac{e^x}{x} 1\right)$. D'après un théorème de croissance comparée, $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ donc, par somme, $\lim_{x \to +\infty} \left(\frac{e^x}{x} 1\right) = +\infty$. De plus, $\lim_{x \to +\infty} x = +\infty$ donc, par produit, $\lim_{x \to +\infty} x \left(\frac{e^x}{x} 1\right) = +\infty$. En conclusion, $\lim_{x \to +\infty} g(x) = +\infty$.
 - b. g est dérivable sur \mathbb{R} comme somme de fonctions dérivables sur \mathbb{R} . Et, pour tout réel x, $g'(x) = e^x 1$. Or, $e^x \ge 1 \Leftrightarrow x \ge 0$ et $g'(x) = 0 \Leftrightarrow x = 0$. La fonction g admet donc le tableau de variations suivant.



D'après le tableau ci-dessus, g admet en 0 un minimum égal à 2. Donc, pour tout réel x, $g(x) \ge 2$ d'où, pour tout réel x, g(x) > 0.

- 2. Étude de la limite de f en $-\infty$: $\lim_{x \to -\infty} x = -\infty$ donc, par somme, $\lim_{x \to -\infty} (x+1) = -\infty$. D'autre part, $\lim_{x \to -\infty} \mathrm{e}^x = 0^+$ donc, par quotient, $\lim_{x \to -\infty} \frac{x}{\mathrm{e}^x} = -\infty$. Et ainsi, par somme, $\lim_{x \to -\infty} f(x) = -\infty$. Étude de la limite de f en $+\infty$: $\lim_{x \to +\infty} x = +\infty$ donc, par somme, $\lim_{x \to +\infty} (x+1) = +\infty$. D'autre part, d'après un théorème de croissance comparée, $\lim_{x \to +\infty} \frac{\mathrm{e}^x}{x} = +\infty$ et donc, par passage à l'inverse, $\lim_{x \to +\infty} \frac{x}{\mathrm{e}^x} = 0$. Ainsi, par somme, $\lim_{x \to +\infty} f(x) = +\infty$.
- 3. La fonction f est dérivable sur \mathbb{R} comme somme de fonctions dérivables sur cet ensemble. Pour tout réel x, $f'(x) = 1 + \frac{e^x xe^x}{e^{2x}} = 1 + e^{-x} xe^{-x} = e^{-x}$ ($e^x + 1 x$) = $e^{-x}g(x)$.
- 4. D'après la question 1.b., pour tout réel x, g(x) > 0. De plus, pour tout réel x, $e^{-x} > 0$. Donc, pour tout $x \in \mathbb{R}$, f'(x) > 0. La fonction f admet donc le tableau de variations ci-dessous.

Livre du professeur - Mathématiques Tle Spécialité - Chapitre 5 : Limites de fonctions

x	$-\infty$	$+\infty$
f'(x)	+	
f	$-\infty$	+∞

- 5. a. Si une fonction f est dérivable en a, alors une équation de la tangente à la courbe représentative de f au point d'abscisse a est donnée par la formule y = f'(a)(x a) + f(a). Or f'(0) = 2 et f(0) = 1. La tangente à la courbe \mathcal{C} au point d'abscisse 0 admet donc pour équation y = 2(x 0) + 1 soit y = 2x + 1.
 - b. On pose, pour tout réel x, h(x) = f(x) (2x + 1). On a alors : $h(x) = x + 1 + \frac{x}{e^x} (2x + 1) = \frac{x}{e^x} x = \frac{x}{e^x} (1 e^x)$. Or $e^x \ge 1 \Leftrightarrow x \ge 0$ donc $1 e^x \ge 0 \Leftrightarrow x \le 0$. La fonction h admet donc le tableau de signes ci-dessous.

x	$-\infty$	0		$+\infty$
x	_	0	+	
$1 - e^x$	+	0	_	
e^x	+		+	
h(x)	_	0	_	

Pour tout x réel, on a donc $h(x) \leq 0$. On en déduit que \mathcal{C} est toujours située en dessous de T.